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Fast algorithm for successive computation of group betweenness centrality
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In this paper, we propose a method for rapid computation of group betweenness centrality whose running
time (after preprocessing) does not depend on network size. The calculation of group betweenness centrality is
computationally demanding and, therefore, it is not suitable for applications that compute the centrality of
many groups in order to identify new properties. Our method is based on the concept of path betweenness
centrality defined in this paper. We demonstrate how the method can be used to find the most prominent group.
Then, we apply the method for epidemic control in communication networks. We also show how the method
can be used to evaluate distributions of group betweenness centrality and its correlation with group degree. The
method may assist in finding further properties of complex networks and may open a wide range of research

opportunities.
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I. INTRODUCTION

Complex networks are used to study the structure and
dynamics of complex systems in various disciplines [1]. For
example, social networks [2,3], protein interactions networks
[4], and computer networks such as the internet [5,6] are all
classified as complex networks. In social networks, vertices
are usually individuals, and edges characterize the relations
between them; in computer networks, vertices might be rout-
ers connected to each other through communication lines.

Evaluation of the importance of vertices and edges is
widely used in analysis of complex networks. To evaluate the
importance, various centrality measures such as degree,
closeness, and betweenness have been suggested [2,7]. Be-
tweenness centrality (BC or B) [8,9] is considered to be a
good approximation for the quantity of information passing
through a vertex in communication networks [10]. In fact,
the BC of vertices was used in [11] to define a congestion-
free routing strategy. The BC of edges was used in [12,13] to
identify communities in social and biological networks.

Everett and Borgatti [14] defined group betweenness cen-

trality (GBC or I§) as a natural extension of the betweenness
measure. The GBC can be used to estimate the influence of a
group of vertices over the information flow in the network.
Freeman [8] has defined the group betweenness centraliza-
tion index as a measure of the homogeneity of the members’
betweenness. In this paper we use the GBC definition of
Everett and Borgatti.

Scale-free networks are characterized by heterogeneity of
vertices in terms of connectivity degree and BC [15-17].
Such networks withstand random damage but may be easily
disrupted when the most central nodes are compromised
[18]. Heavy-tailed distribution of BC in these networks sug-
gests that there are vertices that control a significant portion
of the information flow in the network. To the best of our
knowledge, distribution of GBC has not yet been studied. A
heavy right tail of the GBC distribution indicates that there
are groups that control nearly all information flow in the
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network, while the vast majority of the groups will control
only a small part of the information flow. A small right tail of
the GBC distribution indicates that many groups can have a
high degree of influence on the information flow in the net-
work. While the former warrants spending resources to
search for the group with high GBC, the latter suggests that
such a group can be obtained from a few random samples.
Thus, it is important to study the GBC distribution in a va-
riety of complex networks.

In Sec. V we give several examples that illustrate the
efficiency of the computational method presented in the
analysis of complex networks. We show in the first example
that the distribution of GBC for small groups in scale-free
networks has a long right tail, although it is not a power-law
distribution. For larger groups, the GBC distribution con-
verges to a normal distribution in both random [19] and
scale-free networks [15]. We also show that the correlation
between GBC and group degree [14] is higher in scale-free
networks than in random networks.

Identification of the most prominent group of vertices in a
network is an important issue from the theoretical and prac-
tical points of view. For example, Ballester ef al. state in [20]
the importance of finding the key group in a criminal net-
work. Borgatti elaborates in [21] on a key player problem
that is strongly related to the cohesion of a network. Proac-
tive immunization strategies based on connectivity of the
individual vertices [22,23] can be improved by locating the
most prominent group. A group of routers with the highest
GBC in a computer communication network can be used for
compromising the anonymity of the network users [24]. In
Sec. V we show that the GBC can be used to optimize de-
ployment of distributed intrusion detection systems in com-
munication networks [25-28].

The problem of finding the group with maximal GBC is
proven to belong to a class of problems with unknown effi-
cient solution [28]. hard. Thus, combinatorial optimization
techniques (such as heuristic search, genetic algorithms, etc.
[29]) should be used to cope with this problem. The time
spent on a single GBC computation is of critical importance
since such techniques require many GBC computations. In
this paper, we propose a method for fast successive compu-
tation of GBCs. We also show how the same computational
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method can be used to find a group of vertices of particular
size whose GBC is negligibly close to the maximum.

We claim that researchers will increasingly use the GBC
once they realize that it can be computed faster. We show
that it is computationally feasible to compute the GBC of
many groups or even to find a group of particular size whose
GBC is negligibly below maximal. At the end of the paper,
we demonstrate how the GBC can be used for epidemic con-
trol in communication networks. Up to now the time re-
quired to compute the GBC of many groups in a network
was too high to allow extensive use. We believe that our
algorithm will facilitate the use of the GBC in further studies
of complex networks.

The rest of the paper is structured as follows. In Sec. II we
present the definitions and notations that are used in the pa-
per. In Sec. III we describe our algorithm for fast successive
GBC computation. In Sec. IV we show how to find a group
of vertices whose GBC is negligibly below maximal. In Sec.
V we illustrate a few applications of our computational
methods. Section IV concludes the paper with a summary
and suggestions for future work.

II. DEFINITIONS AND NOTATIONS

In order to simplify the discussion, in this paper we as-
sume that a subject network G=(V,E) where |V|=n and |E|
=m 1is an unweighted, undirected, and connected graph.
Computational methods presented in this paper are appli-
cable also to graphs that do not obey the above constraints.

We use small latin letters to indicate vertices v,u,x,yE V.
We use capital latin letters to indicate unordered sets or or-
dered tuples of vertices C,M,S,PCV. We use braces or
greek letters to indicate various functions.

A. Betweenness and group betweenness centrality

In the following paragraphs, we will describe the basic
definitions we adopted from previous research. Let s and ¢ be
two vertices in a graph. Let o, be the total number of short-
est paths between s and 7. Let v be a vertex that lies on a
shortest path between s and 7. From all paths between s and
t, several may pass through v and others may pass an alter-
native way. We denote the number of shortest paths from s to
¢ that pass through v by o (v). The number of shortest paths
from s to ¢ that pass through v is

T5 0y d(s,t) =d(s,v) +d(v,1),
Us,t(v) = .
0 otherwise,

(1)

where d(x,y) is the distance between vertices x and y.

Let &;.(v) be the total fraction of shortest paths that start
at s and traverse v [8,30]. Roughly speaking, &.(v) repre-
sents the influence of vertex v on communications originat-
ing at s and can be defined by the following equation:

b= S L) 2)

revls#r Tsit

The betweenness centrality of vertex v &€V represents the
total influence that v has on communications between all
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pairs of vertices. The betweenness centrality of node v is

Bw= S ("—(”))= »

sIEV|s#v#t g SEV|s#v

5.). ()

s,t

Existing algorithms compute &;.(v) for all s,v €V in O(mn)
time and therefore the BC of all vertices can be computed in
the same asymptotic running time [30-32].

The BC of individual vertices can be naturally extended
to betweenness centrality of groups of vertices [14]. Let

CCV be a group of vertices. B(C) stands for the total frac-
tion of shortest paths between all pairs of vertices that pass
through at least one member of the group C. Let &, ,(C) be
the number of shortest paths between s and ¢ that traverse at
least one member of the group C. The group betweenness
centrality of group C is

o= 3 (“—(C)) )

stEWC|s#t Oyt

Note that, in the original definition of betweenness, shortest
paths that start or end at the evaluated vertices are not in-
cluded in the computation. It is more convenient to think that
information originating at some vertex is seen by this vertex
and hence should be accounted for. In this paper, we include
shortest paths that start or end at the evaluated vertices in
computation of their betweenness. Inclusion of the end ver-
tices results in addition of a constant term (2n—2) to a
single-vertex BC and [|C|(2n—|C|-1)] to B(C). Similar
variation of BC was previously mentioned in [17]. In this
paper, we use a variant of the algorithm presented in [30]
(which accounts for shortest paths that start or end at v) in
order to compute o, and J;.(v).

B. Path betweenness centrality

In the following paragraphs, we define path betweenness
centrality (PB or B). We generalize the concept of a single-

vertex betweenness to E(S) where S=(v,,v,,...,0;) iS an
ordered group of vertices. B(S) stands for the total fraction of
shortest paths between all pairs of vertices that traverse all
vertices in S (first v;, then v,, etc.). Edge betweenness [9,12]
is a special case of PB where S=(u,v) is an edge in the
graph. Let &, (S) be the number of shortest paths between s
and 7 that traverse all vertices in S (first v,, then v,, etc.). The
path betweenness of an ordered group S is

> (&—(S)) (5)

S,IEV|s#t Ot

B(S) =

The PB of a pair of vertices can be computed using the
following equation:

By =S o)) (6)
eV Oy

The multiplication in Eq. (6) represents the fraction of short-
est paths that start at s and traverse x and then y. Note that,

for x=y, B(x,y)=B(x)=B(y).
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III. EFFICIENT COMPUTATION OF THE GBC

A. Preprocessing

The algorithm described in this paper requires preprocess-
ing. The following three matrices are calculated during the
preprocessing.

(1) d—an n X n matrix whose elements d(s,?) store the
distance between vertices s and f.

(2) o—an n X n matrix whose elements o, store the num-
ber of shortest paths between vertices s and ¢.

(3) B—an n X n matrix whose elements g(x,y) store the
path betweenness of pair (x,y).

The values of the d and o matrices can be calculated by
algebraic path counting [33] or using breadth first search at
O(nm). We use Eq. (6) to compute B(x,y) for every pair of
vertices in the graph. The value of &;.(y) used in Eq. (6) can
be computed using existing algorithms at O(nm) for all
s,y € V [30]. Every entry in the B matrix can be computed at
O(n) and, therefore, the worst case asymptotic running time
of the full preprocessing stage is O(n?). In Sec. ITI C we will
demonstrate how the preprocessing time can be reduced if
we compute B(x,y) only for pairs of vertices that are in-
volved in computation of the GBC.

B. GBC computation

In the following paragraphs, we will describe a fast algo-
rithm for successive GBC computation. Assume that we
want to compute the GBC of the group C of size k. Let M be
a subset of C that includes vertices whose joint contribution
to B(C) was already computed. In the course of the algo-
rithm’s execution, M grows k times until it is equal to C, and
hence at the end of the algorithm B(M) is equal to B(C).
Each time we add a vertex to M, we spend O(k®) time to
update the following data structure.

(1) B(M)—a variable that stores the current value of
B(M). B(M) is initialized to zero.

(2) oM—a kXk matrix whose elements oﬁ”, (s,t€0)
store the number of shortest paths between s and ¢ that do not
traverse any vertex in M. The initial values of a{"’l (for M
=0) are taken from the precomputed matrix o

(3) BY—a kxk matrix whose elements B™(x,y):
(x,y € C) store the path betweenness of pair (x,y), disregard-
ing the shortest paths that traverse at least one vertex in M.
Initial values of B (x,y) (for M=0) are taken from the pre-
computed matrix B(x,y).

Given the above definitions, we can show that EM(v,v)
represents the GBC that can be gained by adding v to M. On

one hand, B(M) is the total fraction of the shortest paths that

traverse at least one vertex in M. On the other hand, B (v,v)
is the total fraction of shortest paths that traverse v, exclud-
ing shortest paths that traverse at least one vertex in M, and
therefore B(M)+BM(v,v)=B(M U{v}).

We will describe now how to compute the path between-
ness of a sequence of three vertices with respect to a set M.
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FIG. 1. The solid lines represent paths that are included in o
calculations while dotted lines represent paths that are disregarded.
ﬂ(x,y):S and Eﬁ(x,v,y)z&%=4.

We will start the discussion with o. Similar to Eq. (1),
oM (v)=d" 0¥, assuming that v lies on a shortest path be-
tween s and 7. Let x and y be two vertices on a shortest path
from s to . There are three segments (s~ x, x~y, and y~-1)
on the way from s to t. The number of shortest paths from s
to ¢ that traverse both x and y but do not traverse M can be
found by multiplying the numbers of shortest paths in all
three segments, E{Z(x, y)=aﬁ.ofv v Similarly, the number
of shortest paths between s and ¢ that traverse x, v, and then
y is a product of the number of shortest paths in four respec-

tive segments [ﬁ(x,v,y):o‘MoM oM oM (see Fig. 1). It is

SXT X070,y yt-
easy to see that

Fyxv.y) = ol or, o0 oy, = ﬂ(x,y)aggv) '

We use the above observation to calculate the path between-

ness of three vertices. Let BM (x,v,y) be the total fraction of
the shortest paths between all pairs of vertices that traverse x,
then v, and then y without traversing any vertex in M.

BM(x,v,y) can be computed from BM(x,y) as follows:

- @(xv,y) o (v) @ (x,y)
M _ s, _ Yy 5.
Binv.y)= SJEEV OJsWt B chv]) SJEEV o

o (v)

= =2 BY(x,y). (7)

X,y

An ordered group of three vertices can be constructed by
adding one vertex to a pair of vertices. Let © be an operator
for adding vertex z to an ordered pair of vertices (x,y), such
that there is a shortest path that traverses x, y, and z:

(z.x,y), d(z,y)=d(z,x) +d(x,y),
(x,y)ez=1(xzy), dxy) =d(xz)+d(zy), (8)
(x,y,2), d(x,2) =d(x,y) +d(y,2).

If two or more conditions are satisfied then this operator
returns one of the options. For example, if x=z then (x,y)
oz=(z,x,y)=(x,z,y)=(x,y). If no condition is satisfied
(there is no shortest path that traverses x, y, and z) then

(x,y)ez is not defined and B[(x,y)°z]=0.

The implementation of the algorithm can be found in [34]
while the pseudocode is presented in Algorithm 1. Lines 1-4
in Algorithm 1 initialize its data structures by copying the
relevant information from the precomputed data. The loop in
line 5 goes through all the vertices in group C, accumulating
their contributions to the GBC in line 6. The contribution of

each vertex to GBC is BM(v,v). The contribution of the

first vertex is its betweenness value [B%v,,v,)=B(v,,v,)
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FIG. 2. The gray area represents the vertices whose contribution
has already been added to the GBC. The dashed and dotted lines
represent the step of the algorithm in which the contribution of v is
added to the GBC. Thin dashed lines are shortest paths that were
already accounted for. The bold dashed line represents the contri-
bution of v to the GBC.

=B(v;)]. The second vertex can contribute only those
shortest paths that do not pass through the first vertex

[B®1}(v,,0,)], and so on. The contribution of vertex v when
it is added to M is shown in Fig. 2.

Lines 7—11 update the matrices o™ and B for the new M
by removing shortest paths that traverse v. o-M) in line 8 is
decreased by O'M (v), removing paths that traverse v [ y(v)
is computed usmg Eq. (1)]. In the special case, in which x
=y (line 9), we subtract from the current contribution of x

[given by BM(x,x)] paths that also traverse v in both direc-
tions x~~v and v~-x. In a general case (line 10), we use oM

and d to calculate the value of B[(x,y)ov] according to

Egs. (7) and (8). We then decrease EM(x,y) by this value,
removing paths that traverse v. Line 11 adds v to M. At this
point, a possible implementation can copy the temporal ma-

trices oY%} and BMYP} into oM and BM, respectively.

Sketch of proof. The correctness of the algorithm can be
proved by induction on the size of M.

Invariants. Before each execution of line 5 of the algo-
rithm, the following invariants are always true.

(a) V x,yEC, oM is the number of shortest paths from
x to y, excluding shortest paths that traverse at least one
vertex in M.

(b)V x,yEC, BM(x, y) is the path betweenness of (x,y)
excluding shortest paths that traverse at least one vertex in
M.

Base case. The number of shortest paths between x and y,
0.y, and the total fraction of shortest paths that traverse x

and then y, B(x,y), are calculated in the preprocessing stage.
These numbers are assigned in lines 2 and 3 of Algorithm 1

to ajxwV and BY(x,y), respectively. Since M is empty, no
shortest paths should be disregarded and, therefore, the
above assignments prior to executing line 5 for the first time
respect the above invariants.

Induction step. Assume that both invariants are true for
M. We show that the invariants are true for M U {v} after the
next execution of lines 6-13 (and immediately before the
next execution of line 5). By the induction assumption, after
the last time line 5 is executed the value in a'M is the number
of shortest paths from x to y excluding the shortest paths that
traverse at least one vertex in M. In addition, it holds in this
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stage that the value in BY(x, y) is the total fraction of shortest
paths that traverse x and then y excluding shortest paths that
traverse at least one vertex in M.

Algorithm 1. B(C).

Input: C, dn><n’ 0_n><n, Ean
Output: B(C)

(1) M0

2V x,yeC, gﬁi]yHUX‘y ~
(3) V x,yEC, BY(x,y)—B(x,y)
4) B0

(5) for each veEC

(6) B—B+B"(v,v)

(7) for each x,yEC

(8) a’MU{U}<—aM o (v)

) #x yF#u
EMU{U}(x,x) — EM(x,x) - EM(U,X) - EM(X’U)
(10)  else

BMYW(x,y) — BM(x,y) = B[ (x,y) o v]
(11) M—MU{v}

In lines 7 and 8 of Algorithm 1 the value ch (U) is sub-
tracted from every entry x,y € C of o™. To do so, we calcu-
late the number of shortest paths that start in x and arrive at
v and multiply this number by the number of shortest paths
that start in v and end in y (only when v is on a shortest path
between x and y: the distance between x and y is equal to the
distance between x and v plus the distance between v and y).
That is, the value obtained following the subtraction is the
total number of shortest paths between x and y that do not
traverse any vertex in M Uv.

In lines 7 and 9-12 of Algorithm 1, the path betweenness
of three vertices x, y, and v is subtracted from every entry

x,yEC of BM. To do so for the case in which v is on a
shortest path between x and y, we use the value in oM) and
the calculated aM (v) (for which we described the calculation
above) to compute the fraction of the number of shortest
paths that traverse v on the way from x to y, and the total
number of shortest paths between x and y. The obtained frac-

tion is used to update BM(x,y) by a subtraction of the part of

BM(x,y) that is related to paths that traverse v. The other
cases, in which either x is on a shortest path between v and y
or y is on a shortest path between x and v, are treated analo-
gously. The obtained value is the path betweenness of (x,y)
excluding paths that traverse any vertex in M or v.

The above two invariants and the fact that B¥(v,v) in line

6 represents the contribution of v to B(M) imply that the
accumulation in line 6 of the algorithm results in the GBC of
C. This concludes the proof sketch.

During the execution of Algorithm 1, contributions of all
vertices in C are constantly updated. Therefore, an efficient
greedy maximization of the GBC can be constructed by start-
ing the algorithm with C=V and each time choosing the next
vertex with maximal contribution in line 5 (see Sec. IV). The
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updated contribution of vertices can also accelerate the
search for the group with maximal GBC using a heuristic
search [28].

C. Performance evaluation

We will now demonstrate the efficiency of the proposed
algorithm by comparing its running time with the running
time of state of the art algorithms for GBC computation
[14,24]. The state of the art algorithm is an immediate exten-
sion of the algorithm proposed by Brandes [30] for faster
computation of single-vertex betweenness indices. Our algo-
rithm requires preprocessing to be executed. Therefore, it is
supposed to be less efficient for tasks that require a small
number of GBC computations per network. However, as will
be explained below, even for computing the GBC of two
groups, our approach is competitive with the state of the art
GBC computation.

The running time of Algorithm 1 without preprocessing
scales as k. In Sec. III A the preprocessing stage of Algo-
rithm 1 was described. Preprocessing time can be reduced
from O(n®) to O(mn) if we postpone the computation of

E(x, y) until it is needed in line 3 of Algorithm 1. In order to
compute the GBC of a group of size k, only k” entries of the

B matrix are required. Every entry in the B matrix can be

computed at O(n) using Eq. (6). Therefore, all required B
values can be computed at O(nk2)_. When computing the
GBC of a single group with k= m vertices, the time re-
quired to compute o, d, and S, matrices [O(nm)] dominates

over the time required to compute relevant B values [O(nk?)]
and the GBC of the group [O(k?)]. Therefore, the total time
spent on computation of the GBC (including preprocessing)
of a single group using the method proposed in this paper is
O(nm) when k= ym. State of the art algorithms compute the
GBC in the same asymptotic running times.

Algorithm 1 proposed in this paper is efficient in comput-
ing the GBC of several groups on the same network. State of
the art algorithms compute the GBC of / groups of size k on
a network with n vertices and m edges in O(nml). With the
full preprocessing stage, the total running time required to
complete the above task using Algorithm 1 is proportional to

n3+1k3. The total running time spent on computation of B

values cannot exceed O(r’) since B is computed only once
for every pair of vertices. Total running time required to
compute the GBC of / groups of size k on a network with n
vertices and m edges with a reduced preprocessing stage is
proportional to min{n*+1k*,nm+Ink®} in the worst case.
Thus, state of the art algorithms for GBC computation may
perform better only for sparse networks when there are few
large groups of vertices to evaluate.

In order to demonstrate the effectiveness of our algorithm,
we generated ten random networks of size 100, ten of size
200, and so on to 500 vertices. All networks were sparse with
twice as many edges as vertices. We computed the GBC for
random groups of size 20 using the state of the art algorithm
(A1), Algorithm 1 with full preprocessing (A2), and Algo-
rithm 1 with reduced preprocessing (A3). The algorithms
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FIG. 3. (a) Running time of algorithms for GBC computation
as a function of the number of evaluated groups of size k=20 for
network size n=500. (b) Running time of algorithms for
GBC computation as a function of the network size for /=900
evaluated groups of size k=20. Al: state of the art algorithm. A2:
Algorithm 1 with full preprocessing. A3: Algorithm 1 with reduced
preprocessing.

were implemented in PYTHON using NUMPY and NETWORKX
packages and executed on a PC P.Duo-3 GHz with 2 Gbytes
memory [34]. The running time of the algorithms is pre-
sented in Fig. 3. We can see in the figure that with the re-
duced preprocessing the proposed algorithm outperforms the
state of the art algorithm when computing the GBC of two or
more groups.

IV. FINDING THE PROMINENT GROUP

In this section, we present another algorithm that uses
Algorithm 1 to find a prominent group in terms of the GBC.
In Sec. V we will apply this algorithm for epidemic control
in communication networks.

Ideally we would like to find the group of a given size
with the maximal GBC. Unfortunately, it can be proved by
reduction from the minimal vertex cover problem [35] that
finding a group with maximal GBC is a difficult problem.
One way to cope with the complexity of this problem is to
employ heuristic search [28,29]. Algorithm 1 helps to find
the group with the highest GBC in an efficient manner since
it is optimized for computing the GBC of a large number of
groups; therefore, it plays a significant role in reducing the
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time it may take to search for the most central group [28].
There is also evidence that the time it takes to search for the
group with maximal GBC is smaller in scale-free [15,18]
than in binomial random networks [19].

Another option is to use a polynomial time algorithm to
find a group whose GBC is high but not guaranteed to be the
maximal. An important property of the computational
method described in this paper is that it computes the con-
tribution of vertices to the GBC of a group during its execu-
tion. This property is used in Algorithm 2 to find a group of
vertices whose GBC is negligibly below maximal. The qual-
ity of results produced by this iterative algorithm is higher in
scale-free networks than in binomial random networks [28].

Algorithm 2 is an iterative algorithm that, in every step,
chooses the vertex with highest contribution to the GBC of
vertices already accounted for. Algorithm 2 receives as input
three matrices computed during the preprocessing stage (see
Sec. III A), the set of candidate vertices from which it will
choose the best group, and the size of that group. The time
required to execute lines 6—10 of Algorithm 2 is proportional
to the square of the number of candidate vertices. Algorithm
2 computes the contribution of all candidate vertices k times.
Therefore the running time of Algorithm 2 is O(k|C|?). The
Algorithm 2 running time including preprocessing is propor-
tional to min{nm+n|CJ*,n*+k|C|*} (see Sec. III).

Algorithm 2. Find the group with high GBC.
Input: C, k, d™", g"*", B"

Output: group M C C of size k

(1) M0

)V x,yeC, (ﬁfybax,y ~

(3) V x,yEC, BM(x,y)—B(x,y)

(4) for i=1to k

(5) find v € C with maximal BM(v,v)

(6) for each x,yeC

7 o~ ()

X,y

®) ifx=y#v
EMU{U}(X,)C) - EM()C,X) —EM(U,X) _EM()C,U)

9) else

BMYW(x,y) — BM(x,y) = BM[(x,y) e v]
(10) M—MU{v}

V. APPLICATIONS

In this section, we briefly describe several examples that
illustrate the effectiveness of our algorithms in the analysis
of complex networks. The first example is an evaluation of
GBC distribution in preferential attachment and random net-
works. In the second example we evaluate the correlation of
group betweenness and group degree [14] centrality indices.
We show here that the correlation between these two mea-
sures decreases as the size of the group grows. The last ex-
ample describes the application of computational methods
proposed in this paper in the field of epidemic control in
communication networks. All algorithms used in this section
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FIG. 4. Cumulative distribution of GBC on BA (a) and random
(b) networks of size 500.

were implemented in PYTHON using NUMPY and NETWORKX
packages and executed on a PC P.Duo-3 GHz with 2 Gbytes
memory.

A. GBC distribution

It is well known that the betweenness centrality distribu-
tion follows a power law in many scale-free networks
[15,17]. However, to the best of our knowledge, the distribu-
tion of the GBC has not yet been studied. We have evaluated
the GBC distribution by analyzing networks of sizes
100,200,...,500 vertices and average degree of 2. Ten net-
works of each size were generated using the Barabasi-Albert
(BA) model [15] and ten were binomial random networks
[19]. The GBC distribution was computed for groups of sizes
1, 10, 20, and 30. We have computed the GBC of 1000
random groups for every network.

For singletons and small groups, the GBC distribution is
exponential in random graphs and heavy tailed in preferen-
tial attachment networks as described in the literature. For
large groups, the GBC distribution converges to the normal
distribution in random binomial and preferential attachment
networks. These results, in uncorrelated networks, can be
explained by the central limit theorem. We can see in Fig. 4
that in scale-free networks the convergence to the normal
distribution is much slower than in random binomial net-
works, as the right tail dominates even for relatively large
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FIG. 5. (a) Degree and BC of random vertices in networks of
size 500. (b) Group degree and GBC of random groups of 30 ver-
tices on networks of size 500.

groups. Such behavior of the GBC distribution was observed
for all tested network sizes.

B. Correlation between the GBC and group degree

The BC and degree of single vertices are known to be
correlated [17,36]. In this example we quantify the correla-
tion between the GBC and group degree for different group
sizes in BA and random networks. For this purpose we de-
rived the group degree of every group whose GBC was com-
puted in the previous section. We can see from Figs. 5 and 6
that there is a correlation between the GBC and group de-
gree; however, when the size of the group increases the cor-
relation decreases. The correlation between group degree and
GBC as a function of the group size is presented in Fig. 6.
The correlation between group degree and GBC is higher in
BA networks than in random binomial networks. The high
correlation between betweenness and degree suggests that in
some cases when computational time is an expensive re-
source the group degree can be used as a good heuristic for
locating a group of vertices with high GBC.

C. Epidemic control in communication networks

Theoretical models of epidemic propagation have long
been studied by scientists in the physics community [37-40].
Targeted immunization strategies that prefer vertices with
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FIG. 6. Correlation between group degree and GBC as a func-
tion of the group size on networks with 500 vertices.

high connectivity were proposed in order to control the epi-
demic propagation in a variety of networks [22,23]. Be-
tweenness is suitable for epidemic control in networks with
natural community structure [12] or in sparse networks
where cutoff vertices exist. Betweenness is also suitable for
epidemic control in cases where the infection is communi-
cated over a public medium. One example of such disease in
biology is the dog worm Spirocercalupi. This parasite is
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FIG. 7. Dynamics of epidemic propagation on communication
network of size 500 protected using random selection of vertices,
selection based on the BC, GBC, and degree. (a) The infected mass
as a function of time (with 15 protected vertices). (b) The infected
mass as a function of the fraction of protected vertices.
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transferred from one dog to another through excrement and
dung beetles. In this case we can consider dogs as commu-
nicating parties and all the areas where dogs are taken out for
a walk as the public media. Special attention should be given
to cleanliness of the areas with high 2-betweenness [41].
Next we will demonstrate the effectiveness of epidemic con-
trol based on the GBC in communication networks.

Computer viruses and worms are able to spread over com-
puter communication networks such as the internet. In com-
puter communication networks, vertices might be routers
connected to each other through communication lines. Com-
puters are usually connected to a portion of the routers via
internet service providers. When one computer sends conta-
gious data to another, the data pass through several routers in
the network. One possible solution that may reduce the num-
ber of computers being infected by a virus or worm is to
filter out the contagious communications in the network fab-
ric before it has reached computers. Several solutions (de-
vices) that are able to perform this task even on high-speed
internet connections have been proposed [42]. Since the
price of such devices is high, there is a need to find an
optimal deployment strategy where not all the vertices are
cleaned.

We model propagation of computer viruses using the sus-
ceptible, infective, removed model of epidemics with equal
infectivity [43,44]. In the susceptible state, a computer is
vulnerable to the particular virus but not yet infected. In the
infective state, the computer is infected and facilitates
spreading of the virus by infecting one random peer in every
time unit. And, finally, in the removed state, the computer
has been patched or an antivirus update installed. Dealing
with computers, it is natural to assume that both susceptible
and infective computers can be patched in every time unit
with a constant probability S. This scenario is typical when
software vendors release the patch soon after the virus was
first observed. It takes time for users to adopt this patch, but
finally all users do and the virus prevalence is halted.

During an epidemic each computer can potentially infect
every other computer in the network with equal probability.
The simulations were performed on five Watts-Strogatz
small-world networks [45] of size 500 with an average de-
gree of 6 and rewiring probability of 0.015. We have com-
pared the effectiveness of deployment strategy based on Al-
gorithm 2 to deployment strategies based on the BC, degree,
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and random deployment strategies. We simulated the virus
propagation with 8=6.7X 107>. We stopped the simulation
after 1000 time units. We measured the fraction of computers
that were infected during the simulation. The fraction of in-
fected computers as a function of the deployment size aver-
aged over five random starting positions is presented in Fig.
7. We can see from Fig. 7 the superiority of deployment
strategy based on the maximized GBC over the random de-
ployment strategy, a deployment strategy based on degree of
connectivity, and a deployment strategy based on the BC of
vertices.

VI. SUMMARY

In this paper we presented a method for rapid computa-
tion of the GBC whose running time (after preprocessing)
does not depend on network size. The method is based on the
concept of path betweenness centrality defined in this paper.
We demonstrated the method’s superiority over the state of
the art computation method. In addition, we demonstrate
how a variation of the method can be used to find the most
prominent group of vertices of a particular size.

We presented three applications of the proposed method.
In the first we evaluated the GBC distribution in preferential
attachment and random networks. In the second, we evalu-
ated the correlation of group betweenness and group degree
centrality indices. We show that the correlation between
these two measures decreases as the size of the group in-
creases. In the third, we illustrated how the computational
method can be used in the field of epidemic control in com-
munication networks. We illustrate through simulations the
superiority of a deployment strategy based on the GBC over
deployment based on other centrality measures.

The main principles of the method for GBC computation
described in this paper may also be applicable to other be-
tweenness centrality measures. Newman [46] proposes a be-
tweenness centrality index that is based on a series of ran-
dom walks in a network rather than counting shortest paths.
Random walk group betweenness centrality of edges could
be used to improve the identification of the community struc-
ture in networks [12].

We hope that the presented method will help in finding
new properties of complex networks and will open a wide
range of new research opportunities.
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